A Supervised Machine Learning Algorithms: Applications, Challenges, and Recommendations

Author:

Aqib Ali ,Wali Khan Mashwani

Abstract

Machine Learning (ML) is an advanced technology that empowers systems to acquire knowledge autonomously, eliminating the need for explicit programming. The fundamental objective of the machine learning paradigm is to equip computers with the ability to learn independently without human intervention. In the literature, categorization in data mining has received a lot of traction, with applications ranging from health to astronomy and finance to textual classification. The three learning methodologies in machine learning are supervised, unsupervised, and semi-supervised. Humans must give the appropriate input and output and offer feedback on the prediction accuracy throughout the training phase for supervised algorithms. Unsupervised learning methods differ from supervised learning methods because they do not require any training. However, supervised learning methods are more accessible to implement than unsupervised learning methods. This study looks at supervised learning algorithms commonly employed in data classification. The strategies are evaluated based on their objective, methodology, benefits, and drawbacks.  It is anticipated that readers will be able to understand the supervised machine learning techniques for data classification.

Publisher

Pakistan Academy of Sciences

Subject

General Physics and Astronomy,General Materials Science,General Computer Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Precision seed certification through machine learning;Technology in Agronomy;2024

2. Machine Learning Applications in Structural Engineering;Studies in Systems, Decision and Control;2024

3. Accuracy of Machine Learning for Classifying Malicious URL;2023 IEEE International Conference on Communication, Networks and Satellite (COMNETSAT);2023-11-23

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3