Neuro-wavelet Model for price prediction in high-frequency data in the Mexican Stock market

Author:

Massa Roldán Ricardo1ORCID,Reyna Miranda Montserrat2ORCID,Gómez Salcido Vicente3

Affiliation:

1. Centro de Investigación y Docencia Económicas, México

2. Universidad Anáhuac México, México

3. Investigador independiente

Abstract

With the availability of high frequency data and new techniques for the management of noise in signals, we revisit the question, can we predict financial asset prices? The present work proposes an algorithm for next-step log-return prediction. Data in frequencies from 1 to 15 minutes, for 25 high capitalization assets in the Mexican market were used. The model applied consists on a wavelet followed by a Long Short-Term Memory neural network (LSTM). Application of either wavelets or neural networks in finance are common, the novelty comes from the application of the particular architecture proposed. The results show that, on average, the proposed LSTM neuro-wavelet model outperforms both an ARIMA model and a benchmark dense neural network model. We conclude that, although further research (in other stock markets, at higher frequencies, etc.) is in order, given the ever increasing technical capacity of market participants, the inclusion of the LSTM neuro-wavelet model is a valuable addition to the market participant toolkit, and might pose an advantage to traditional predictive tools.

Publisher

Instituto Mexicano de Ejecutivos de Finanzas, A.C. (IMEF)

Reference65 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3