Author:
Almadani Enas A.,Harun Farah W.,Radzi Salina M.,Muhamad Syamsul K.
Abstract
Clay catalyst has received much attention to replace the homogeneous catalysts in the esterification reaction to produce fatty acid methyl ester as the source of biodiesel as it is low cost, easily available, as well as environmental friendly. However, the use of unmodified clay, in particular montmorillonite K10 (MMT K10), for the esterification of fatty acids showed that the acid conversion was less than 60% and this is not preferable to the production of biodiesel. In this study, synthesis of stearic acid methyl ester using Cu2+-MMT K10 (Cu-MMT K10) was successfully optimized via response surface methodo-logy (RSM) based on 3-variable of Box-Behnken design (BB). The parameters were; reaction time (5-180 minutes), reaction temperature (80-120 oC) and concentration of Cu2+ in MMT K10 (0.25-1 M). The use of RSM in optimizing the conversion of stearic acid was successfully developed as the actual experimental conversion of stearic acid was found similar to the actual values under the optimum conditions. The model equation predicted that the following conditions would generate the maximum conversion of stearic acid (87.05 %reaction time of 62 minutes, a reaction temperature of 80 oC and catalyst used is 1.0 M Cu-MMT K10. This finding can be considered as green catalytic process as it worked at moderate reaction temperature using low cost clay catalyst with a short reaction time. Copyright © 2018 BCREC Group. All rights reservedReceived: 26th July 2017; Revised: 13rd January 2018; Accepted: 13rd January 2018; Available online: 22nd January 2018; Published regularly: 2nd April 2018How to Cite: Almadani, E.A., Harun, F.W., Radzi, S.M., Muhamad, S.K. (2018). Cu2+ Montmorillonite K10 Clay Catalyst as a Green Catalyst for Production of Stearic Acid Methyl Ester: Optimization Using Response Surface Methodology (RSM). Bulletin of Chemical Reaction Engineering & Catalysis, 13 (1): 187-195 (doi:10.9767/bcrec.13.1.1397.187-195)
Publisher
Bulletin of Chemical Reaction Engineering and Catalysis
Subject
Process Chemistry and Technology,Catalysis
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献