Author:
Abdouss Majid,Arsalanfar Maryam,Mirzaei Nima,Zamani Yahya
Abstract
The MgO-supported Fe-Co-Mn catalysts, prepared using co-precipitation procedure, were tested for production of light olefins via CO hydrogenation reaction. The effect of a range of drying conditions including drying temperature and drying time on the structure and catalytic performance of Fe-Co-Mn/MgO catalyst for Fischer-Tropsch synthesis was investigated in a fixed bed micro-reactor under the same operational conditions of T = 350 °C, P = 1 bar, H2/CO = 2/1, and GHSV = 4500 h-1. It was found that the catalyst dried at 120 °C for 16 h has shown the best catalytic performance for CO hydrogenation. Furthermore, the effect of drying conditions on different surface reaction rates was also investigated and it was found that the precursors drying conditions influenced the rates of different surface reactions. Characterization of catalyst precursors and calcined samples (fresh and used) was carried out using powder X-ray Diffraction (XRD), Scanning Electron Microscopy (SEM), Energy Dispersive Spectroscopy (EDS), Brunauer-Emmett-Teller (BET) measurements, Temperature Programmed Reduction (TPR), Thermal Gravimetric Analysis (TGA), and Differential Scanning Calorimetry (DSC). Characterization results showed that different investigated variables (drying conditions) influenced the structure, morphology and catalytic performance of the ternary catalysts. Copyright © 2018 BCREC Group. All rights reservedReceived: 21st May 2017; Revised: 29th August 2017; Accepted: 7th September 2017; Available online: 22nd January 2018; Published regularly: 2nd April 2018How to Cite: Abdouss, M., Arsalanfar, M., Mirzaei, N., Zamani, Y. (2018). Effect of Drying Conditions on the Catalytic Performance, Structure, and Reaction Rates over the Fe-Co-Mn/MgO Catalyst for Production of Light Olefins. Bulletin of Chemical Reaction Engineering & Catalysis, 13 (1): 97-112 (doi:10.9767/bcrec.13.1.1222.97-112)
Publisher
Bulletin of Chemical Reaction Engineering and Catalysis
Subject
Process Chemistry and Technology,Catalysis
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献