Production of CO-rich Hydrogen Gas from Methane Dry Reforming over Co/CeO2 Catalyst

Author:

Ayodele Bamidele V.,Khan Maksudur R.,Cheng Chin Kui

Abstract

<p>Production of CO-rich hydrogen gas from methane dry reforming was investigated over CeO<sub>2</sub>-supported Co catalyst. The catalyst was synthesized by wet impregnation and subsequently characterized by field emission scanning electron microscope (FESEM), energy dispersion X-ray spectroscopy (EDX), liquid N<sub>2</sub> adsorption-desorption, X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and thermogravimetric analysis (TGA) for the structure, surface and thermal properties. The catalytic activity test of the Co/CeO<sub>2</sub> was investigated between 923-1023 K under reaction conditions in a stainless steel fixed bed reactor. The composition of the products (CO<sub>2</sub> and H<sub>2</sub>) from the methane dry reforming reaction was measured by gas chromatography (GC) coupled with thermal conductivity detector (TCD). The effects of feed ratios and reaction temperatures were investigated on the catalytic activity toward product selectivity, yield, and syngas ratio. Significantly, the selectivity and yield of both H<sub>2</sub> and CO increases with feed ratio and temperature. However, the catalyst shows higher activity towards CO selectivity. The highest H<sub>2</sub> and CO selectivity of 19.56% and 20.95% respectively were obtained at 1023 K while the highest yield of 41.98% and 38.05% were recorded for H<sub>2</sub> and CO under the same condition. Copyright © 2016 BCREC GROUP. All rights reserved</p><p><em>Received: 21<sup>st</sup> January 2016; Revised: 23<sup>rd</sup> February 2016; Accepted: 23<sup>rd</sup> February 2016</em></p><p><strong>How to Cite:</strong> Ayodele, B.V., Khan, M.R., Cheng, C. K. (2016). Production of CO-rich Hydrogen Gas from Methane Dry Reforming over Co/CeO<sub>2</sub> Catalyst. <em>Bulletin of Chemical Reaction Engineering &amp; Catalysi</em>s, 11 (2): 210-219 (doi:10.9767/bcrec.11.2.552.210-219)</p><p><strong>Permalink/DOI:</strong> http://dx.doi.org/10.9767/bcrec.11.2.552.210-219</p>

Publisher

Bulletin of Chemical Reaction Engineering and Catalysis

Subject

Process Chemistry and Technology,Catalysis

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3