Affiliation:
1. Chemistry Department, Faculty of Science and Mathematics, Universitas Diponegoro, Jl. Prof. Jacob Rais, Tembalang, Semarang 50275, Indonesia
2. Physics Department, Faculty of Mathematics and Natural Sciences, Sebelas Maret University, Surakarta 57126, Indonesia
Abstract
Bismuth oxide nanoparticles were synthesized through the solution combustion method with a variation of fuel: oxidizer (hydrazine: bismuth nitrate) ratios (ϕ) of ϕ<1, ϕ=1 (stoichiometrically balanced) and ϕ> 1. Bismuth oxide nanoparticles were characterized by Fourier Transform Infrared Spectroscopy (FTIR), X-Ray Diffraction (XRD), Scanning Electron Microscopy (SEM), and UV-Visible Diffuse Reflectance Spectroscopy (UV-DRS). The FTIR spectra obtained implies that the bismuth oxide nanoparticles of the three ratios contain Bi-O-Bi and Bi-O groups indicating its successful formation. XRD diffractogram suggests that the synthesized bismuth oxide nanoparticles form the α-Bi2O3 crystalline phase for ϕ<1 and ϕ>1; meanwhile a mixture of α-/β- Bi2O3 phases for ϕ=1. The SEM image illustrates that bismuth oxide nanoparticles form pebble shapes with the ratios in the order of increasing particle sizes of ϕ>1, ϕ=1, and ϕ<1. The UV-DRS results show that the bismuth oxide with ϕ<1, ϕ=1, and ϕ>1 have respective band gap energies of 2.76 eV, 2.72 eV, and 2.78 eV. The evaluation of the photocatalytic activity of the three bismuth oxide samples shows bismuth oxide with ϕ=1 has the highest photocatalytic activity in remazol black B and methyl orange dyes with rate constants 6.744 x 10-5 s-1 and 7.369 x 10-5 s-1, respectively. Copyright © 2023 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).
Publisher
Bulletin of Chemical Reaction Engineering and Catalysis
Subject
Process Chemistry and Technology,Catalysis,General Chemistry