Ultrasound Assisted Synthesis of Polylimonene and Organomodified-clay Nanocomposites: A Structural, Morphological and Thermal Properties

Author:

Derdar Hodhaifa12,Mitchell Geoffrey Robert3,Cherifi Zakaria12,Belbachir Mohammed1,Benachour Mohamed1,Meghabar Rachid1,Bachari Khaldoun2,Harrane Amine42

Affiliation:

1. Laboratoire de Chimie des Polymères, Département de Chimie, Faculté des Sciences Exactes et Appliquées, Université Oran1 Ahmed Benbella, BP 1524, El-Mnaouer, 31000 Oran, Algeria

2. Centre de Recherche Scientifique et Technique en Analyses Physico-Chimiques (CRAPC), Algeria

3. Centre for Rapid and Sustainable Product Development, Institute Polytechnic of Leiria, Marinha Grande, Portugal

4. Department of Chemistry, FSEI, University of Abdelhamid Ibn Badis Mostaganem, Algeria

Abstract

Polylimonene-clay nanocomposites (PLM-Mag 2, 3, 6 and 10% by weight of clay) were prepared by mixing Maghnite-CTA+ (Mag-CTA+) and polylimonene (PLM) in solution using ultrasonic irradiation. The catalyst preparation method were studied in order to determine and evaluate their structural, morphological and thermal properties. The Mag-CTA+ is an organophylic montmorillonite silicate clay prepared through a direct exchange process, using green natural clay of Maghnia (west of Algeria) called Maghnite. The Algerian clay was modified by ultrasonic-assisted method using cetyltrimethylammonuim bromide (CTAB) in which they used as green nano-reinforcing filler. Polylimonene was obtained by the polymerization of limonene, using Mag-H+ as a catalyst. The morphology of the obtained nanocomposites was studied by X-ray diffraction (XRD), scanning electronic microscopy (SEM), transmission electronic microscopy (TEM) and infrared spectroscopy (FT-IR). Thermogravimetric analysis (TGA) shows that the nanocomposites have a high degradation temperature (200−250 °C) compared with the pure polylimonene (140 °C). The analyses confirmed the chemical modification of montmorillonite layers and their uniformly dispersion in the polylimonene matrix. Exfoliated structures were obtained for low amounts of clay (2 and 3% by weight), while intercalated structures and immiscible regions were detected for high amounts of clay (6 and 10% by weight). Copyright © 2021 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).  

Funder

(DGRSDT) Direction Générale de la Recherche Scientifique et du Développement Technologique-Algeria

Publisher

Bulletin of Chemical Reaction Engineering and Catalysis

Subject

Process Chemistry and Technology,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3