Effect of Immobilization Methods on the Production of Polyethylene-cellulose Biocomposites via Ethylene Polymerization with Metallocene/MAO Catalyst

Author:

Tumawong Praonapa1,Chaichana Ekrachan2,Jongsomjit Bunjerd1

Affiliation:

1. Center of Excellence on Catalysis and Catalytic Reaction Engineering, Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand

2. Research Center of Research Center of Natural Materials and Products, Chemistry Program, Faculty of Science and Technology, Nakhon Pathom Rajabhat University, Muang, Nakhon Pathom 73000, Thailand

Abstract

Polyethylene-cellulose biocomposites were synthesized here via the ethylene polymerization with metallocene as a catalyst along with methylaluminoxane (MAO) as a cocatalyst. The immobilization method in which the catalyst or cocatalyst is fixed onto the catalytic filler (cellulose) can be classified into 3 methods according to the active components fixed onto the filler surface: 1) only metallocene catalyst (Cellulose/Zr), 2) only MAO cocatalyst (Cellulose/MAO) and 3) mixture of metallocene and MAO (Cellulose/(Zr+MAO)). It was found that the different immobilization methods or different fillers altered the properties of the obtained composites and also the catalytic activity of the polymerization systems. It was found that Cellulose/MAO provided the highest catalytic activity among all fillers due to a crown-alumoxane complex, which caused the heterogeneous system with this filler behaved similarly to the homogeneous system. The different fillers also produced the biocomposites with some different properties such as crystallinity which Cellulose/Zr provided the highest crystallinity compared with other fillers as observed by a thermal gravimetric analysis-differential scanning calorimetry (TGA-DSC). Nevertheless, the main crystal structure indicated to the typical polyethylene was still observed for all obtained biocomposites with different fillers as observed by an X-ray diffractometer (XRD). Copyright © 2021 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0). 

Funder

Chulalongkorn University

Publisher

Bulletin of Chemical Reaction Engineering and Catalysis

Subject

Process Chemistry and Technology,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3