Mesoporous Ce-doped Ti:Ash Photocatalyst Investigation in Visible Light Photocatalytic Water Pretreatment Process

Author:

Suliman Abdulkarim Abdulrahman Mohamed1,Isha Ruzinah1,Seman Mazrul Nizam Abu1,Ahmad Abdul Latif2,Roslan Jamil1

Affiliation:

1. Faculty of Engineering Technology of Chemical and Process, Universiti Malaysia Pahang, Lebuhraya Tun Razak, 23600 Kuantan Pahang, Malaysia

2. School of Chemical Engineering, Universiti Sains Malaysia, Engineering Campus, 14300 Nibong Tebal, Pulau Pinang, Malaysia

Abstract

The treatment of organic pollutants in water including semiconductor photocatalysis is a promising approach to disinfect water. The objective of this study is to investigate the effect of Ce loaded on mesoporous Ti:Ash catalyst for water pretreatment process. The mesoporous Ti:Ash catalyst that doped with Ce was synthesized through wet impregnation method with 5%, 10%, and 15% weight percentage of Ce doped on 40:60 Ti:Ash. The photocatalytic properties were characterized through X-ray powder diffraction, scanning electron microscopy with energy-dispersive X-ray spectroscopy, N2 adsorption-desorption studies and diffuse reflectance UV–vis absorption spectroscopy. It is found that the Ti:Ash nanocomposites doped with Ce shifted the light absorption band-edge position to the visible region. Moreover, the Ce doped Ti:Ash has large surface area and pore diameter. The Ce doping could significantly improve the absorption edge of visible light and adjust the cut-off absorption wavelength from 404 nm to 451, 477 and 496 nm for 5%, 10% and 15% Ce-doped mesoporous Ti:Ash catalysts, respectively. As the Ce doping ratio increased, the band gaps decreased from 3.06 eV to 2.53 eV. The most contaminant reduction up to 45% was achieved when Ti:Ash:Ce 40:55:5 was used. Higher Ce loading on the photocatalyst may reduce the photocatalyst performance because supernumerary metal loading on TiO2 can block TiO2 defect sites which are necessary for the adsorption and photoactivation. The OPFA also acts as an adsorbent for some pollutants besides, reducing the water salinity. It can be deduced that the hybrid TiO2 photocatalyst that synthesized with OPFA and doped with Ce has huge potential to treat seawater prior to commercial seawater desalination process. Copyright © 2020 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0). 

Funder

Universiti Malaysia Pahang

Publisher

Bulletin of Chemical Reaction Engineering and Catalysis

Subject

Process Chemistry and Technology,Catalysis

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The characteristics of TiO2 anatase from tulungagung sand as an antibacterial material;Nanosystems: Physics, Chemistry, Mathematics;2022-12-28

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3