Preparation Titanium Dioxide Combined Hydrophobic Polymer with Photocatalytic Self-Cleaning Properties

Author:

Wahyuningsih Sayekti1ORCID,Cahyono Rochmad E.1,Aini Fitri N.1

Affiliation:

1. Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Sebelas Maret, Surakarta, Indonesia

Abstract

Titanium dioxide (TiO2) and hydrophobic of TiO2/PDMS (PDMS = polydimethylsiloxane) have been prepared as photocatalytic self-cleaning materials. Synthesis of TiO2 was carried out using the sol-gel method with titanium(IV) isopropoxide (TTIP) as a precursor and acetic acid as a solvent at a temperature of about 10–15 °C, while the synthesis of hydrophobic of TiO2/PDMS composites was carried out by a sonication method under ethanol solution. The results of XRD analysis of synthesized TiO2 showed that TiO2 was anatase phase. The glass-coated TiO2/PDMS were prepared by dip-coating under an ultrasonication bath. TiO2/PDMS composites at a ratio of TiO2/PDMS (1) on the glass plate showed hydrophobic properties, as evidenced by the contact angle of 104° before irradiation and the contact angle of 99.7° after irradiation. The synthesized titanium dioxide has irregular spherical morphology. The increase in PDMS content was correlated with an increase in the roughness of TiO2. PDMS not only acts as low surface energy but also binds TiO2. The hydrophobic behavior of PDMS creates TiO2/PDMS repel each other, gain irregular agglomeration structures. Beside having optimum contact angle, glass-coated TiO2/PDMS (1) is the best composition for degradation of methylene blue in 69.68% for 20 minutes irradiation. Copyright © 2021 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0). 

Funder

Universitas Sebelas Maret

Publisher

Bulletin of Chemical Reaction Engineering and Catalysis

Subject

Process Chemistry and Technology,Catalysis

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3