Affiliation:
1. Graduate School of Mathematics and Natural Sciences, Faculty of Mathematics and Natural Sciences, Universitas Sriwijaya, Indonesia
2. Research Center of Inorganic Materials and Coordination Complexes, Faculty of Mathematics and Natural Sciences, Universitas Sriwijaya, Indonesia
3. Department of Pharmacy, Faculty of Mathematics and Natural Sciences, Universitas Sriwijaya, Indonesia
Abstract
The synthesis and characterization of M2+/Al (M2+=Ni, Mg) layered double hydroxide (LDH) and intercalated polyoxometalate is presented. We have reported the growth of polyoxometalate on Ni/Mg layered double hydroxide for degradation methylene blue (MB). By considering variables such as pH of dye solution, dye concentration, and time as degradation variables, the efficiency of organic dye degradation and degradation parameters of M2+/Al (M2+ = Ni, Mg) LDH and both composite LDH-polyoxometalate has been identified. X-Ray Diffraction (XRD), Fourier Transform Infra Red (FTIR), Scanning Electron Microscope (SEM), and Ultra Violet Diffuse Reflectance Spectroscopy (UV-DRS) spectroscopy confirmed the layered double hydroxide structure. XRD and FTIR analysis confirmed the single-phase of the as-made and polyoxometalate intercalated LDH. SEM images show the formation of aggregates of small various sizes. The material’s photodegradation was assessed through methylene blue (MB) degradation process. The result showed that NiAl-Si has a good degradation capacity for MB as compared to NiAl-Pw, MgAl-Si, and MgAl-PW. The result shows that LDH composite presents stability and has good photocatalytic activities toward the reduction of methylene blue. The FTIR measurement confirming the LDH composite structure reveals the materials used in the fifth regeneration. The activity of MB photodegradation pristine were NiAl (45%), MgAl (43%), NiAl-Pw (78%), NiAl-Si (85%), MgAl-Pw (58%), and MgAl-Si (75%), respectively. The LDH-polyoxometalate composite material’s capacity to successfully photodegrade, as measured by the percentage of degradation, revealed an increase in photodegradation catalysis and the ability of the LDH to regenerate. Copyright © 2023 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).
Publisher
Bulletin of Chemical Reaction Engineering and Catalysis
Subject
Process Chemistry and Technology,Catalysis,General Chemistry
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献