Subcritical Water Process for Reducing Sugar Production from Biomass: Optimization and Kinetics

Author:

Muharja Maktum1ORCID,Widjaja Arief2ORCID,Darmayanti Rizki Fitria1ORCID,Fadhilah Nur3,Airlangga Bramantyo2ORCID,Halim Abdul4ORCID,Fadilah Siska Nuri1,Arimbawa I Made1

Affiliation:

1. Department of Chemical Engineering, Faculty of Engineering, Universitas Jember, Jalan Kalimantan 37, Jember 68121, Indonesia

2. Department of Chemical Engineering, Faculty of Industrial Technology and System Engineering, Institut Teknologi Sepuluh Nopember, Surabaya 60111, Indonesia

3. Department of Engineering Physics, Faculty of Industrial Technology and System Engineering, Institut Teknologi Sepuluh Nopember, Surabaya 60111, Indonesia

4. Department of Chemical Engineering, Universitas Internasional Semen Indonesia, Gresik 61122, Indonesia

Abstract

The competitive reactions of lignocellulose hydrolysis and monosaccharide degradation in the subcritical water (SCW) hydrolysis of coconut husk were investigated to optimize the reducing sugar yield. Optimization analysis was performed by response surface methodology (RSM) and kinetics studies. Parameters of process optimization were varied at 130-170 °C for 15-45 min. The reducing sugars were measured using the Dinitro salicylic acid method. The sugar yield increased when the temperature increased from 130 °C to 170 °C. The highest reduction sugar yield of 4.946 g/L was obtained at 183.6 °C for 4.8 min and 23.4 liquid/solid ratio (LSR). Kinetics studies were carried out at temperature variations of 150, 170, and 190 °C and pressures of 60, 80, and 100 bar for 5 to 60 min. The yield of reducing sugar decreased with increasing temperature. The kinetic model 2B is the best method to explain the competitive reaction kinetics of coconut husk hydrolysis. This research is an innovation to increase the reducing sugar to make the process more commercially viable. Copyright © 2022 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0). 

Funder

Ministry of Education, Culture, Research, and Technology of the Republic of Indonesia

Publisher

Bulletin of Chemical Reaction Engineering and Catalysis

Subject

Process Chemistry and Technology,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3