Study on Method of Doping Au Nanoparticles on ZnO Stratified Microstructure to Enhance Photocatalytic Ability and Antibacterial Activity

Author:

Vu Anh Tuan1ORCID,Pham Thi Anh Tuyet1

Affiliation:

1. School of Chemical Engineering, Hanoi University of Science and Technology, Hanoi, Viet Nam

Abstract

In this study, stratified microstructure gold/zinc oxide (Au/ZnO) composites were successfully prepared by the method of dispersing Au nanoparticles (Au NPs) on the surface of the hierarchical flower ZnO via HAuCl4 reduction in the presence of different reducing agents such as sodium citrate (SC), sodium borohydride (SB), sodium hydroxide and ethanol (SE), and Hg lamp 250W. Au-doped samples were named Au/ZnO-SC, Au/ZnO-SB, Au/ZnO-SE, and Au/ZnO-Hg lamp, respectively. Au/ZnO-SC and Au/ZnO-SB revealed the uniform distribution of Au nanoparticles on the ZnO substrate, meanwhile, Au nanoparticles were very densely distributed in Au/ZnO-SE and Au/ZnO-Hg lamp samples. The pure ZnO only showed an absorption peak in the ultraviolet (UV) region, Au/ZnO samples indicated additional absorption peaks in the visible light region (500-600 nm), which were characteristic of the surface plasmon resonance (SPR) effect of Au NPs in composites. Therefore, their bandgap energy was reduced compared to ZnO (3.202 eV), leading to increased photocatalytic efficiency under visible light irradiation. Among the doped samples, Au/ZnO-SC (with Au content as 5 wt%) had the largest surface area (26.23 m2/g) and the highest pore volume (0.263 cm3/g) and average pore width (33.2 nm). As a result, it showed the highest catalytic efficiency through complete degradation of tartrazine (TA) within 30 min with a reaction rate of 0.124 min−1 under Hg lamp 250 irradiation. In addition, both pure ZnO and Au/ZnO nanocomposites exhibited high antimicrobial activity in killing Escherichia coli (E. coli), and their enhancing effect of them was reliant on the weight ratio of Au on ZnO and the concentration of tested samples. These results indicated that Au/ZnO material has prominent potential for applications in water environment treatment. Copyright © 2023 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0). 

Funder

Vietnam National Foundation for Science and Technology Development

Publisher

Bulletin of Chemical Reaction Engineering and Catalysis

Subject

Process Chemistry and Technology,Catalysis,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3