Catalytic Photodegradation of Cyclic Sulfur Compounds in a Model Fuel Using a Bench-scale Falling-film Reactor Irradiated by a Visible Light

Author:

Mousa Noor Edin1,Mohammed Seba S.2,Shnain Zainab Y.1ORCID,Abid Mohammad F.3,Alwasiti Asawer A.1ORCID,Sukkar Khalid A.1ORCID

Affiliation:

1. Chemical Engineering Department, University of Technology, Baghdad, Iraq

2. Department of Chemical and Oil Industries, Institute of Northern Technical University, Mosul, Iraq

3. Department of Oil and Gas Refining Engineering, Al- Turath University College, Al-Mansour Quarter, Baghdad, Iraq

Abstract

A homemade N doped-TiO2 nanoparticle were used to degrade dibenzothiophene (DBT) in a model fuel flowing on a bench-scale glass-made falling film reactor irradiated by a xenon lamp that emitted visible light. The photocatalyst was immobilized on the glass sheet. EDS, SEM, and FT-IR techniques were utilized to identify the morphology of the N doped-TiO2 nanoparticles. Different operating parameters (e.g., N loading (0, 4, 5, and 6 wt%), light intensity (20, 40, and 60 W/m2), and pH (4, 7, and 10)) were investigated for their effect on the DBT degradation.  The effect of the N loading on the wettability of the nano-TiO2 particles was also investigated. Experimental results revealed that the N loading did not affect the wettability characteristics of the nano TiO2 particles. Moreover, results showed that DBT conversion positively depends on N loading, light intensity (hv), and pH increase. The estimated optimal operating parameters were 5 wt% N loading, pH = 10, and hv = 40 W/m2 to ensure the best photo-oxidation efficiency of 91.4% after 120 min of operation. The outcomes of the present work confirmed the effective efficiency of the N-doped TiO2 nanoparticles irradiated by visible light for DBT degradation. Copyright © 2022 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0). 

Funder

University of Technology, Baghdad, Iraq

Publisher

Bulletin of Chemical Reaction Engineering and Catalysis

Subject

Process Chemistry and Technology,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3