Optimal Suppression of Photocatalytic Activity of Hybrid TiO2 Particles in Epoxy Thin Film by Using Taguchi Method

Author:

Muniandy Sunderishwary S.1ORCID,Soon Tan Sek1,Pung Swee Yong1,Ramakrishnan Sivakumar1ORCID

Affiliation:

1. School of Materials and Mineral Resources Engineering, Engineering Campus, Universiti Sains Malaysia, 14300 Nibong Tebal, Pulau Pinang, Penang, Malaysia

Abstract

In this study, two different Al2O3-TiO2 and SiO2-TiO2 hybrid TiO2 particles were synthesised by using silica (SiO2) and alumina (Al2O3) to suppress the photocatalysis of TiO2. Key variables such as the concentration of the hybridization material (C), heating temperature (Th), and calcinating temperature (Tc) were selected with performance measured by photodegradation rate. The Taguchi L9 orthogonal array, a systematic approach used in the design of experiments (DOE), confirmed A333 (Al2O3-TiO2) achieved 99% photodegradation suppression with photodegradation rate reduced significantly from 0.01305 min−1 to 0.00009 min−1 and improved yellowing resistance by 63%, while S323 (SiO2-TiO2) achieved 75% suppression with photocatalysis activity decreased from 0.01305 min−1 to 0.0033 min−1 and 42% improved resistance. X-ray Diffraction (XRD) analysis showed A333 had a higher rutile phase (40.1% vs. 10.2% for S323), and Fourier Transform Infra Red (FTIR) and Field Emission Scanning Electron Microscopy (FESEM) analyses revealed A333's rougher surface and lower surface area compared to S323 and pure TiO2. Overall, A333 effectively suppressed photocatalysis and improved yellowing resistance of epoxy thin film. Copyright © 2024 by Authors, Published by BCREC Publishing Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).

Funder

Ministry Of Higher Education Malaysia

Publisher

Bulletin of Chemical Reaction Engineering and Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3