Exploring Alkali Hydroxide Influence on Calcium Titanate Formation for Application in Biodiesel Catalysts

Author:

Puntharod Ratchadaporn1,Onsomsuay Kittikarnkorn1,Pookmanee Pusit1,Kumchompoo Jaturon1ORCID

Affiliation:

1. Department of Chemistry, Faculty of Science, Maejo University, Chiang Mai, Thailand

Abstract

Biodiesel has been recognized as the most widely utilized biofuel around the world due to its significant role in reducing the consumption of crude oil and lowering environmental pollution levels. By serving as a renewable alternative to fossil fuels, bioethanol helps decrease greenhouse gas emissions and contributes to a more sustainable energy future. Traditionally, alkali hydroxides like NaOH and KOH have been mainstays in biodiesel synthesis. However, their overuse can lead to unwanted byproducts and operational complexities. Since calcium titanate can occur at a strong base condition, it presents an alternative avenue worth exploring. In this study, we investigate the influence of alkali hydroxides, namely LiOH, NaOH, and KOH, on the formation of calcium titanate through hydrothermal methods, with varying heating times. We aim to understand how different hydroxides affect the synthesis process and the resultant properties of calcium titanate. We delve into the vibrational properties of Ca‒O‒Ti and Ti‒O bonds using Fourier transform infrared spectroscopy (FTIR), confirming the presence of calcium titanate (JCPDS No.42-0423) through X-ray diffractometry (XRD). This thorough characterization provides insight into the structural integrity and composition of the synthesized materials. Moreover, scanning electron microscopy (SEM) reveals the intriguing cube-like morphology of calcium titanate, offering visual evidence of its unique structure. The fatty acid methyl ester Iimpressively, our results show that calcium titanate synthesized in 7 M NaOH and KOH solutions, heated for 24 hours, emerges as a promising biodiesel catalyst. We observe fatty acid methyl ester provides the percentages of 63.67% and 90.02%, respectively, indicating the catalytic efficacy of these materials in biodiesel production. These findings not only contribute to the understanding of calcium titanate synthesis but also pave the way for a sustainable future in biodiesel production by introducing efficient and eco-friendly catalysts.

Funder

Faculty of Science, Maejo University

Publisher

Bulletin of Chemical Reaction Engineering and Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3