An Experimental and Computational Study of Zeolitic Imidazole Framework (ZIF-8) Synthesis Modulated with Sodium Chloride and Its Interaction with CO2

Author:

Priandani Lita1,Aliefa Amarilis1,Arjasa Oka Pradipta2,Pambudi Fajar Inggit1ORCID

Affiliation:

1. Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Sekip Utara Bulaksumur Yogyakarta 55281, Indonesia

2. Advanced Materials Research Centre - National Research and Innovation Agency, Banten 15314, Indonesia

Abstract

The increase of CO2 level in atmosphere becomes one of the driving forces for research on functional materials. Capturing and utilizing of CO2 are more important than ever, both to reduce CO2 emission and to increase the economic value of CO2 derivatives. In this study, synthesis of metal-organic frameworks (MOFs) was conducted by combining Zn2+ metal nodes and 2-methylimidazolate ligand to form zeolitic imidazolate frameworks (ZIF-8) materials. ZIF-8 was synthesised with the addition of sodium chloride to modulate the crystal morphology during the in-situ synthesis, using either water or methanol as the solvent. According to the refinement of the X-ray diffraction pattern, the ZIF-8 materials were successfully prepared and have unit cell parameters that are reasonably close to the available standard. The formation of ZIF-8 is also confirmed by IR spectroscopy, which reveals the stretching vibration mode of Zn−N from the coordination between Zn2+ and 2-methylimidazolate ligand. The crystal morphology exhibits different shape, as observed in SEM and TEM studies, with the dominant shape being a rhombic dodecahedron. The interaction between ZIF-8 and CO2 was investigated via ex-situ IR spectroscopy, combined with several computational techniques such as density functional theory and molecular dynamics, to elucidate the nature of the CO2 binding sites. Copyright © 2023 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0). 

Funder

Universitas Gadjah Mada

Publisher

Bulletin of Chemical Reaction Engineering and Catalysis

Subject

Process Chemistry and Technology,Catalysis,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3