Improving Photocatalytic Efficiency with Titanium Dioxide Quantum Dots

Author:

Dao Nam Duy1,Lam Tho Thi2,Van Anh Dieu1,Vu Ha Thi Thu2,Trung Hai Huynh3

Affiliation:

1. School of Chemistry and Life Science, Hanoi University of Science and Technology, 1 Dai Co Viet Road, Hai Ba Trung, Hanoi, Viet Nam

2. National Key Laboratory for Petrochemical and Refinery Technology, 2 Pham Ngu Lao Street, Hoan Kiem District, Hanoi, Viet Nam

3. School of Materials Science and Engineering, Hanoi University of Science and Technology, 1 Dai Co Viet Road, Hai Ba Trung, Hanoi, Viet Nam

Abstract

Titanium dioxide quantum dots (TiO2-QDs), synthesized using a microwave-assisted method, represent a significant advancement in photocatalysis, particularly in the treatment of environmental pollutants. This study focuses on TiO2-QDs synthesized at 200°C for a duration of 5 minutes, using titanium butoxide as a precursor. Characterization through TEM, XRD, PL, and UV-Vis-DRS analyses revealed uniform quantum dots with an average size of 5.28 nm, a bandgap energy of 3.22 eV, and a crystalline anatase phase, indicative of high photocatalytic activity. Notably, these TiO2-QDs demonstrated exceptional performance in degrading methylene blue (MB) in water, achieving a remarkable treatment efficiency of 97.6% in 120 min, significantly outperforming both conventional titanium dioxide nanoparticles and commercial titanium dioxide materials. The reaction conditions were evaluated based on factors such as catalyst dose, initial MB concentration, and pH. The results indicate that optimal degradation efficiency of MB was achieved at a pH of 7, with a catalyst dose of 0.15 g/L and at a low MB concentration. The efficiency slightly decreased to 94.5% after five reuse cycles, emphasizing its significant reusability and stability. Copyright © 2024 by Authors, Published by BCREC Publishing Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).

Funder

Ministry of Science and Technology, Vietnam I under grant number ĐTĐL.CN-67/19.

Publisher

Bulletin of Chemical Reaction Engineering and Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3