Optimization of Energy Consumption in Formaldehyde Production Process Using Reboiled Absorption Process

Author:

Sebastian Calvinio Juan1,Adhyaksa Fidelis Neo1,Kamal Mutiara Tabitha1,Susanto Vincentius Edward1

Affiliation:

1. Department of Chemical Engineering, Faculty of Engineering, Diponegoro University, Jln. Prof. Soedarto, Tembalang, Semarang 50275, Indonesia

Abstract

Formaldehyde is a crucial chemical building block in various industries, and its production often involves energy-intensive processes. This study focuses on optimizing energy consumption in formaldehyde production, explicitly employing the reboiled absorption process with a production capacity of 27,000 tons per year. The objective of this article is to develop a more energy-efficient process of formaldehyde synthesis by addition or refrigerant cycle stream to preserve the energy, reducing energy consumption and improving the sustainability of the process. The reboiled absorption process involves the absorption of formaldehyde gas into a liquid absorbent, followed by reboiling to release the absorbed formaldehyde. A comprehensive analysis of the entire production system compares unmodified and modified process simulations, heat integration, and energy analysis. Beside the energy consumption of the process, the number of stages within the absorption process contributes to the product mass flow rate of the overall process by increasing the surface area which mass transfer can occur. However, adding too many stages to the process may negatively impact the energy efficiency of the process. Therefore, optimizing energy consumption and absorption processes in formaldehyde production is essential to improve the sustainability of the process and increase the overall profitability of the production process. The results show that the proposed method dramatically improves the sustainability of CH2O synthesis by reducing overall energy consumption and emissions by 93.978%, reducing energy consumption from 153,735,360.4 kJ/h to 9,256,646.618 kJ/h. Copyright © 2024 by Authors, Published by Universitas Diponegoro and BCREC Publishing Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).

Publisher

Bulletin of Chemical Reaction Engineering and Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3