Cellulose and TiO2–ZrO2 Nanocomposite as a Catalyst for Glucose Conversion to 5-EMF

Author:

Dini Fitriyah Wulan1,Helmiyati Helmiyati1,Krisnandi Yuni K.1ORCID

Affiliation:

1. Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Indonesia, Depok 16424, West Java

Abstract

This work demonstrated the use of green material catalysts, produced from Sengon sawdust waste, to obtain nanocellulose biopolymers. The green material catalysts were utilized as catalysts support of TiO2−ZrO2 binary oxide in the form of nanocomposite materials with superior synergistic properties. The isolation of nanocellulose was achieved using a hydrolysis method with a yield of 63.40%. The TiO2 and ZrO2 nanoparticles have average particle sizes of around 25 and 15 nm, respectively, and the binary oxides of TiO2–ZrO2 pretained an average particle size of 30 nm were used. Furthermore, the nanocellulose combined with the TiO2−ZrO2 binary oxide had formed a cellulose/TiO2−ZrO2 nanocomposite with an average particle size of 30 nm. This indicates that the supporting nanocellulose can stabilize the nanoparticles and avoid aggregation. Moreover, the nanocomposites can be used as a catalyst for the conversion of glucose to 5-ethoxymethylfurfural (5-EMF). The catalytic activity increased with the nanoparticle effect obtained ZrO2, TiO2, TiO2-ZrO2, and cellulose and TiO2-ZrO2 nanocomposite, in 15.50%, 20.20%, 35.20%, and 45.50% yields, respectively. The best yield of 5-EMF was 45.50%, with reaction conditions of 1:1 TiO2–ZrO2 ratio, 4 h reaction time, and 160 °C reaction temperature. The use of nanocellulose biopolymer generated from Sengon sawdust waste in Indonesia provides a promising catalyst support material as an alternative green catalyst. In addition, the glucose carbohydrates can be converted to biofuel feedstocks in the development of a renewable alternative energy. Copyright © 2021 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0). 

Funder

Ministry of Research and Technology/National Research and Innovation

Publisher

Bulletin of Chemical Reaction Engineering and Catalysis

Subject

Process Chemistry and Technology,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3