Investigation of Chlorophyl-a Derived Compounds as Photosensitizer for Photodynamic Inactivation

Author:

Oktavia Listiana1,Mulyani Irma2,Suendo Veinardi3

Affiliation:

1. Research Center for Chemistry, Indonesian Institute of Sciences (LIPI), Indonesia

2. Inorganic and Physical Chemistry Research Division, Institut Teknologi Bandung, Indonesia

3. Research Center for Nanoscience and Nanotechnology, Institut Teknologi Bandung, Indonesia

Abstract

Chlorophyll has unique physicochemical properties which makes them good as photosensitizer of Photodynamic Inactivation (PDI). The physicochemical properties of chlorophyll as photosensitizer can be optimized through several routes.  One of the possible route is by replacing the metal ion center of chlorophyll with other ions. In this research, the effect of coordinated metal ion in the natural chlorophyll-a was studied for bacterial growth (S. aureus) inhibition. The replacement of metal in the center of chlorophyll hopefully can improve the intensity of Intersystem Crossing Mechanism (ISC) lead to the formation of singlet oxygen species. The chlorophyll a and b were isolated from spinach via precipitation technique using 1,4 dioxane and water. The chlorophyll a and b were separated using sucrose column chromatography. The thin layer chromatography result showed that chlorophyll a (Rf: 0.57) had been well separated with chlorophyll b (Rf: 0.408). The absorption spectra of chlorophyll a and b showed that the Soret band was observed at 411 and 425 nm, while the Q band appeared at 663 and 659 nm. Replacement of metal ion center shifted the Soret band of chlorophyll- a derivatives to lower energy region, while Q-band was slightly shifted to the higher energy region. The absorption and the fluorescence intensity were  also observed decreasing after ion replacement. The Inhibition activity investigation over S. aureus showed the highest inhibition activity was exhibited by Zn-pheophytin-a (66.8%) followed by chlorophyll a (30.1 %) and Cu-pheophytin-a (0%). The inhibition activity is correlated with decreasing fluorescence intensity. The formation of singlet oxygen by ISC mechanism is hypothesized to deactivate the excitation state of Cu-pheophytin-a. Copyright © 2021 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0). 

Funder

Institut Teknologi Bandung

Publisher

Bulletin of Chemical Reaction Engineering and Catalysis

Subject

Process Chemistry and Technology,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3