Mesoporous Co3O4 as a New Catalyst for Allylic Oxidation of Cyclohexene

Author:

Azzi HajerORCID,Rekkab-Hammoumraoui I.,Chérif-Aouali L.,Choukchou-Braham A.

Abstract

Mesoporous cobalt oxide was investigated for the liquid phase oxidation of cyclohexene using tertiobutylhydroperoxide (TBHP) as an oxidant. The results were compared with several series of supported cobalt catalysts to study the influence of the cobalt loading and solvents on the overall conversion and selectivity. Mesoporous cobalt was synthesized through the nanocasting route using siliceous SBA-15 mesoporous material as a hard template and cobalt nitrate as the cobalt oxide precursor. Supported cobalt oxide catalysts (Co/MxOy) were synthesized by the impregnation method using two loadings (1 and 5 wt.%) and Al2O3, TiO2, and ZrO2 as supports. Samples were characterised by means: elemental analysis, X-ray powder Diffraction (XRD), BET (surface area), UV-Vis DR Spectroscopy, and MET. The results obtained showed that the cobalt oxide retains the mesoporous structure of SBA-15, and in all Co/MxOy, crystalline Co3O4 and CoO phases are observed. The mesoporous cobalt oxide is more active than the supported cobalt catalysts in the allylic oxidation of cyclohexene, with a conversion of 78 % of cyclohexene and 43.3 % selectivity toward 2-cyclohexene-1-ol. The highest activity of mesoporous cobalt oxide could be ascribed to its largest surface area. Furthermore, Co3O4 has both Lewis and Brönsted acidic sites whereas Co/MxOy has only Lewis acidic sites, which could also explain its superior catalytic activity. Moreover, mesoporous cobalt oxide was more stable than supported cobalt catalysts. Therefore, this catalyst is promising for allylic oxidation of alkenes.  Copyright © 2018 BCREC Group. All rights reservedReceived: 30th March 2018; Revised: 24th September 2018; Accepted: 8th Oktober 2018; Available online: 25th January 2019; Published regularly: April 2019How to Cite: Azzi, H., Rekkab-Hammoumraoui, I., Chérif-Aouali1, L., Choukchou-Braham, A. (2019). Mesoporous Co3O4 as a New Catalyst for Allylic Oxidation of Cyclohexene. Bulletin of Chemical Reaction Engineering & Catalysis, 14 (1): 112-123 (doi:10.9767/bcrec.14.1.2467.112-123)Permalink/DOI: https://doi.org/10.9767/bcrec.14.1.2467.112-123 

Publisher

Bulletin of Chemical Reaction Engineering and Catalysis

Subject

Process Chemistry and Technology,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3