Design of a Synthetic Zinc Oxide Catalyst over Nano-Alumina for Sulfur Removal by Air in a Batch Reactor

Author:

Nawaf Amer T.,Jarullah Aysar TalibORCID,Abdulateef Layth T.

Abstract

Owing to the environmental regulations with respect to sulfur content and continuing challenges of finding a suitable catalyst of such impurity, a driving force for the development of more efficient technologies a deep research on new oxidative catalysts is considered an important issue in fuel quality improvement. Thus, the present study shows a novel percent of nano-catalyst with 18% zinc oxide (ZnO) of active component over nano-alumina that has not been reported in the public domain for sulfur removal from kerosene fuel by air (oxidative desulfurization (ODS) method). Where, such percent of the active component on the nano-alumina helps to add one or two atoms of oxygen to sulfur content in the kerosene. The nano-catalyst (ZnO/nano-alumina-particles composite) is prepared by precipitation of zinc oxide and loaded over nano-alumina in one-step. The activity of the prepared catalyst was tested utilizing ODS process of kerosene fuel by air in a batch reactor. A set of experiments were conducted with a wide range of operating conditions, where the reaction temperature was ranged from 150 to 190ºC, the reaction time from 30 to 50 min and the catalyst weight from 0.4 to 1 g. The experimental results showed that the chemical nature of zinc oxides showed higher conversion (70.52%) at reaction temperature of 190 ºC, reaction time of 50 min, and 1 g catalyst weight used in the batch reactor. A kinetic model related to the sulfur removal from kerosene via ODS process in the batch reactor was also investigated in this study for the purpose of estimating the best kinetic parameters of the relevant reactions. The results showed that the prepared catalyst (ZnO over nano-alumina) can be applied confidently to reactor design, operation and control in addition to improve the fuel quality. Following the kinetic model of ODS process, a very well agreement between the experimental and predicted results is obtained. Copyright © 2019 BCREC Group. All rights reservedReceived: 16th April 2018; Revised: 26th September 2018; Accepted: 30th September 2018; Available online: 25th January 2019; Published regularly: April 2019How to Cite: Nawaf, A.T., Jarullah, A.T., Abdulateef, L.T. (2019). Design of a Synthetic Zinc Oxide Catalyst over Nano-Alumina for Sulfur Removal by Air in a Batch Reactor. Bulletin of Chemical Reaction Engineering & Catalysis, 14 (1): 79-92 (doi:10.9767/bcrec.14.1.2507.79-92)Permalink/DOI: https://doi.org/10.9767/bcrec.14.1.2507.79-92 

Publisher

Bulletin of Chemical Reaction Engineering and Catalysis

Subject

Process Chemistry and Technology,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3