Intercalations and Characterization of Zinc/Aluminium Layered Double Hydroxide-Cinnamic Acid

Author:

Adam Nurain,Sheikh Mohd Ghazali Sheikh Ahmad Izaddin,Dzulkifli Nur Nadia,Che Hak Cik Rohaida,Sarijo Siti Halimah

Abstract

Cinnamic acid (CA) is known to lose its definite function by forming into radicals that able to penetrate into the skin and lead to health issues. Incorporating CA into zinc/aluminum-layered double hydroxides (Zn/Al-LDH) able to reduce photodegradation and eliminate close contact between skin and CA. Co-precipitation or direct method used by using zinc nitrate hexahydrate and aluminium nitrate nonahydrate as starting precursors with addition of various concentration of CA. The pH were kept constant at 7 ± 0.5. Fourier Transform Infrared-Attenuated Total Reflectance (FTIR-ATR) shows the presence of nanocomposites peak 3381 cm–1 for OH group, 1641 cm–1 for C=O group, 1543 cm–1 for C=C group and 1206 cm–1 for C–O group  and disappearance of  N–O peak at 1352 cm–1 indicates that cinnamic acid were intercalated in between the layered structures. Powder X-Ray Diffraction (PXRD) analysis for Zn/Al-LDH show the basal spacing of 9.0 Ǻ indicates the presence of nitrate and increases to 18.0 Ǻ in basal spacing in 0.4M Zn/Al-LDH-CA. CHNS analysis stated that 40 % of cinnamic acid were being found and intercalated in between the interlayer region of the Zn/Al-LDH with higher thermal stability. Field Emission Scanning Electron Microscope (FESEM) images of 0.4 M Zn/Al-LDH-CA shows that the nanocomposites are in more compact, flaky non porous, large agglomerates with smooth the surfaces of the intercalated compound. Controlled release was successful with 80 % release in phosphite anion and 70 % release carbonate anion. The cinnamic acid was successfully inserted between the interlayer regions of Zn/Al-LDH with slow release formulation. Copyright © 2019 BCREC Group. All rights reservedReceived: 1st October 2018; Revised: 8th December 2018; Accepted: 12nd December 2018; Available online: 25th January 2019; Published regularly: April 2019How to Cite: Adam, N., Ghazali, S.A.I.S.M., Dzulkifli, N.N., Hak, C.R.C., Sarijo, S.H. (2019). Intercalations and Characterization of Zinc/Aluminium Layered Double Hydroxide-Cinnamic Acid. Bulletin of Chemical Reaction Engineering & Catalysis, 14 (1): 165-172 (doi:10.9767/bcrec.14.1.3328.165-172)Permalink/DOI: https://doi.org/10.9767/bcrec.14.1.3328.165-172 

Publisher

Bulletin of Chemical Reaction Engineering and Catalysis

Subject

Process Chemistry and Technology,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3