Author:
Pawignya Harsa,Kusworo Tutuk Djoko,Pramudono Bambang
Abstract
The development of a mathematical model for explaining the kinetics of flocculation and coalescence of emulsion droplets is essential to study the stability of an emulsion system of the kinetics of emulsion stability. Mathematic models was developed from the equation Van Den Tempel by modifying emulsion systems. The emulsion was made by mixing water-xylene and surfactant tert-butyl oleyl glycosides. This research studied the effect of stirrer speed on the value of flocculation rate constant (a) and coalescence rate constant (K). The model identified the emulsion development condition whether controlled by coalescence or flocculation. It was observed that under lower agitation speed (1000 rpm) the emulsion development was controlled by flocculation mechanism, while a faster agitation (2000 rpm or higher) exhibited coalescence controlled mechanism. The results confirmed that the 1st model was the most appropriate for water-xylene-TBOG emulsion system. From four models after fitting with experimental data, the most suitable model is 4th model, because it has the smallest error of 2.22 %. Copyright © 2019 BCREC Group. All rights reservedReceived: 2nd May 2018 ; Revised: 17th September 2018 ; Accepted: 18th September 2018; Available online: 25th January 2019; Published regularly: April 2019How to Cite: Pawignya, H., Kusworo, T.D., Pramudono, P. (2019). Kinetic Modeling of Flocculation and Coalescence in the System Emulsion of Water-Xylene-Terbutyl Oleyl Glycosides. Bulletin of Chemical Reaction Engineering & Catalysis, 14 (1): 60-68 (doi:10.9767/bcrec.14.1.2594.60-68)Permalink/DOI: https://doi.org/10.9767/bcrec.14.1.2594.60-68
Publisher
Bulletin of Chemical Reaction Engineering and Catalysis
Subject
Process Chemistry and Technology,Catalysis
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献