Extending the hypergradient descent technique to reduce the time of optimal solution achieved in hyperparameter optimization algorithms

Author:

Seifi Farshad,Niaki Seyed Taghi Akhavan

Abstract

There have been many applications for machine learning algorithms in different fields. The importance of hyperparameters for machine learning algorithms is their control over the behaviors of training algorithms and their crucial impact on the performance of machine learning models. Tuning hyperparameters crucially affects the performance of machine learning algorithms, and future advances in this area mainly depend on well-tuned hyperparameters. Nevertheless, the high computational cost involved in evaluating the algorithms in large datasets or complicated models is a significant limitation that causes inefficiency of the tuning process. Besides, increased online applications of machine learning approaches have led to the requirement of producing good answers in less time. The present study first presents a novel classification of hyperparameter types based on their types to create high-quality solutions quickly. Then, based on this classification and using the hypergradient technique, some hyperparameters of deep learning algorithms are adjusted during the training process to decrease the search space and discover the optimal values of the hyperparameters. This method just needs only the parameters of the previous two steps and the gradient of the previous step. Finally, the proposed method is combined with other techniques in hyperparameter optimization, and the results are reviewed in two case studies. As confirmed by experimental results, the performance of the algorithms with the proposed method have been increased 36.62% and 23.16% (based on the best average accuracy) for Cifar10 and Cifar100 dataset respectively in early stages while the final produced answers with this method are equal to or better than the algorithms without it. Therefore, this method can be combined with hyperparameter optimization algorithms in order to improve their performance and make them more appropriate for online use by just using the parameters of the previous two steps and the gradient of the previous step.

Publisher

Growing Science

Subject

Industrial and Manufacturing Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3