1. Levin, D. A., Peres, Y. and Wilmer, E. L. (2009). Markov Chains and Mixing Times. Amer. Math. Soc., Providence, RI.
2. ALDOUS, D. and FILL, J. A. (2002). Reversible Markov chains and random walks on graphs. Unfinished monograph, recompiled 2014. Available at http://www.stat.berkeley.edu/texttildelowaldous/RWG/book.html.
3. ALDOUS, D. J. (1991). Meeting times for independent Markov chains. Stochastic Process. Appl. 38 185–193.
4. ALON, G. and KOZMA, G. (2020). Comparing with octopi. Ann. Inst. Henri Poincaré Probab. Stat. 56 2672–2685.
5. ANÉ, C., BLACHÈRE, S., CHAFAÏ, D., FOUGÈRES, P., GENTIL, I., MALRIEU, F., ROBERTO, C. and SCHEFFER, G. (2000). Sur les Inégalités de Sobolev Logarithmiques. Panoramas et Synthèses [Panoramas and Syntheses] 10. Société Mathématique de France, Paris. With a preface by Dominique Bakry and Michel Ledoux.