Affiliation:
1. Department of Mathematics and Computer Science, University of Muenster
Publisher
Institute of Mathematical Statistics
Subject
Statistics, Probability and Uncertainty,Statistics and Probability
Reference49 articles.
1. BETZ, V. (2003). Existence of Gibbs measures relative to Brownian motion. Markov Process. Related Fields 9 85–102.
2. BETZ, V., HIROSHIMA, F., LŐRINCZI, J., MINLOS, R. A. and SPOHN, H. (2002). Ground state properties of the Nelson Hamiltonian: A Gibbs measure-based approach. Rev. Math. Phys. 14 173–198.
3. BETZ, V. and LŐRINCZI, J. (2003). Uniqueness of Gibbs measures relative to Brownian motion. Ann. Inst. Henri Poincaré Probab. Stat. 39 877–889.
4. BETZ, V., LŐRINCZI, J. and SPOHN, H. (2005). Gibbs measures on Brownian paths: Theory and applications. In Interacting Stochastic Systems 75–102. Springer, Berlin.
5. BETZ, V. and POLZER, S. (2021). Functional central limit theorems for Polaron path measures. Preprint. Available at arXiv:2106.06447.
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献