Affiliation:
1. Department of Mathematics, Lehigh University
Publisher
Institute of Mathematical Statistics
Subject
Statistics, Probability and Uncertainty,Statistics and Probability
Reference13 articles.
1. BECKMAN, E., FRANK, N., JIANG, Y., JUNGE, M. and TANG, S. (2019). The frog model on trees with drift. Electron. Commun. Probab. 24 Paper No. 26, 10.
2. DÖBLER, C., GANTERT, N., HÖFELSAUER, T., POPOV, S. and WEIDNER, F. (2018). Recurrence and transience of frogs and drift on . Electron. J. Probab. 23 Paper No. 88, 23.
3. DÖBLER, C. and PFEIFROTH, L. (2014). Recurrence for the frog model with drift on . Electron. Commun. Probab. 19 no. 79, 13.
4. FONTES, L. R., MACHADO, F. P. and SARKAR, A. (2004). The critical probability for the frog model is not a monotonic function of the graph. J. Appl. Probab. 41 292–298.
5. GANTERT, N. and SCHMIDT, P. (2009). Recurrence for the frog model with drift on . Markov Process. Related Fields 15 51–58.
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Linear and superlinear spread for stochastic combustion growth process;Annales de l'Institut Henri Poincaré, Probabilités et Statistiques;2024-08-01
2. Improved critical drift estimates for the frog model on trees;Electronic Communications in Probability;2024-01-01
3. Critical drift estimates for the frog model on trees;Electronic Journal of Probability;2024-01-01