1. AGARWAL, A., BEYGELZIMER, A., DUDIK, M., LANGFORD, J. and WALLACH, H. (2018). A Reductions Approach to Fair Classification. In Proceedings of the 35th International Conference on Machine Learning (J. DY and A. KRAUSE, eds.). Proceedings of Machine Learning Research 80 60–69. PMLR.
2. AGRAWAL, S., WANG, Z. and YE, Y. (2014). A Dynamic Near-Optimal Algorithm for Online Linear Programming. Operations Research 62 876–890.
3. ALEMOHAMMAD, S., WANG, Z., BALESTRIERO, R. and BARANIUK, R. (2021). The Recurrent Neural Tangent Kernel. In International Conference on Learning Representations.
4. ALLEN-ZHU, Z. and LI, Y. (2019). What Can ResNet Learn Efficiently, Going Beyond Kernels? In Advances in Neural Information Processing Systems (H. WALLACH, H. LAROCHELLE, A. BEYGELZIMER, F. D' ALCHÉ-BUC, E. FOX and R. GARNETT, eds.) 32. Curran Associates, Inc.
5. ALLEN-ZHU, Z., LI, Y. and LIANG, Y. (2019). Learning and Generalization in Overparameterized Neural Networks, Going Beyond Two Layers. In Advances in Neural Information Processing Systems (H. WALLACH, H. LAROCHELLE, A. BEYGELZIMER, F. D' ALCHÉ-BUC, E. FOX and R. GARNETT, eds.) 32. Curran Associates, Inc.