Multifunctional microorganisms and phosphorus dosages in soybean-maize and soybean-rice successions under no-till systems in the cerrado

Author:

Cruz Dennis Ricardo CabralORCID,Monteiro Natasha Ohanny da CostaORCID,Ferreira Izabely Vitória Lucas,Souza Victórya Gabrielly ManzanORCID,Neto Juracy BarrosoORCID,Silva Mariana AguiarORCID,Nascente Adriano StephanORCID

Abstract

Multifunctional phosphate solubilizing microorganisms can contribute to reducing phosphorus doses without affecting the grain yield of crops. The aim of this work was to evaluate agricultural production systems involving soybean-maize and soybean-rice successions, inoculation of beneficial microorganisms and application of phosphorus doses with a view to sustainable intensification of agriculture and soil health and fertility in the Cerrados region. The experimental design was a randomized block design in a 2x4 factorial scheme with four replications. The treatments were composed of the combination of two phosphorus doses, 50% (45 kg ha-1 of P2O5) and 100% (90 kg ha-1 of P2O5) of the recommended dose with four uses of multifunctional microorganisms: 1. BRM 32111 (Burkholderia sp.), 2. BRM 32114 (Serratia marcescens), 3. co-inoculation (BRM 32111 + BRM 32114), and 4. control (no application of microorganisms). The microorganisms provided significant increases in the 100-grain weight and grain yield of soybeans, dry matter and nutrient accumulation of rice and maize, reduction of phytopathogenic fungus propagules, and increased accumulation of nutrients and activity of the enzymes Betaglicosidase and Arilsulfatase in the soil. Applying 50% phosphorus reduced the 100-grain weight and grain yield of soybean, dry matter and nutrient accumulation of rice, propagules of Trichoderma spp., and the nutrients in the soil. The soybean-maize succession showed higher levels of Arylsulfatase than the soybean-rice succession. The highest soybean yields were obtained by applying BRM 32114 with 50% and co-inoculation with 100% phosphorus.

Publisher

PPUFU - Portal de Periódicos da Universidade Federal de Uberlândia

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3