Loss sampling methods for soybean mechanical harvest

Author:

Strini Paixão Carla Segatto,Voltarelli Murilo Aperecido,Costa Souza Jarlyson BrunnoORCID,De Brito Filho Armando Lopes,Silva Rouverson Pereira daORCID

Abstract

Harvesting is one of the most important stages of the agricultural production process. However, the lack of monitoring during this operation and the absence of efficient methodologies to quantify losses have contributed to the decline in the quality of the operation. The objective of this study was to monitor mechanized soybean harvest by quantifying losses through two methodologies using statistical process control. The study was conducted in March 2016 in an agricultural area in the municipality of Ribeirão Preto, SP, using a John Deere harvester model 1470 with a tangential-type track system and separation by a straw-blower. The experimental design followed the standards established by statistical process control, and every 8 min of harvest, the total losses by the circular framework and rectangular framework methodologies were simultaneously quantified, totaling 40 points. Data were analyzed using descriptive statistics and statistical process control. The averages of the circular methodology framework were values above those found in the rectangular methodology framework, presenting greater representativeness of losses. The process was considered unable to maintain losses of soybeans at acceptable levels during mechanical harvest throughout the operation of the two frameworks. The circular framework for collecting samples at different locations resulted in higher reliability of data.

Publisher

EDUFU - Editora da Universidade Federal de Uberlandia

Subject

General Agricultural and Biological Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3