YÜKSEK ÖĞRENİMDE AÇIK VERİ VE BÜYÜK VERİ MODELİ VE OLASI SONUÇLARI

Author:

KAYNAK Sümeyye1ORCID,KAYNAK Baran2ORCID,ÖZMEN Ahmet2ORCID

Affiliation:

1. Sakarya Üniversitesi

2. SAKARYA UNIVERSITY

Abstract

The basic outputs of universities can be listed as education, research-development and service to society. Managerial software systems at universities generate large amount of open data during daily operations. The data generated by these systems contain valuable public institutional performance information along with critical private information. These public data can be classified, collected and processed by using big data approaches for performance monitoring. In this study, an open data platform is modelled, and issues are discussed related how open data is collected, stored and processed using big data approaches to extract interested performance information. It is shown that institutional performance information can be presented according to a wide variety of metrics from the collected data. Scientific studies that can be carried out in higher education using big data are examined under 4 headings: Creating an open data directive for universities, development of open data platform, institutional accreditation service, creating a digital twin. This platform can be used for online institutional evaluation either by university management or accreditation agencies.

Publisher

Mugla Sitki Kocman University

Subject

Industrial and Manufacturing Engineering,Surfaces, Coatings and Films

Reference31 articles.

1. Thorsby, J., Stowers, G.N.L., Wolslegel, K., and Tumbuan, E., "Understanding the content and features of open data portals in American cities", Government Information Quarterly, vol. 34, no. 1, pp. 53-61, 2017.

2. Muenchen.de “Willkommen beim Open-Data-Portal München”, muenchen.de, Online. Available: https://opendata.muenchen.de/, Accessed: 05.10.2022.

3. NYC.gov, “Open Data for All New Yorkers”, NYC Open Data, Online. Available: https://opendata.cityofnewyork.us/, Accessed: 05.10.2022.

4. data.europa.eu, “Open Data Best Practices in Europe”, Online.Available: https://data.europa.eu/en/datastories/open-data-best-practices-europe, Accessed: 02.09.2022.

5. Sağıroğlu, Ş., Bensghir, T. and et. al. (Sağıroğlu, Ş., and Koç, O.), “Büyük Veri ve Açık Veri Analitiği: Yöntemler ve Uygulamalar”, Grafiker Yayınları, Ankara, 2017.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3