UM ESTUDO DE MAPEAMENTO SISTEMÁTICO DA MINERAÇÃO DE DADOS PARA CENÁRIOS DE BIG DATA

Author:

Mariotto Mozzaquatro Chicon Patricia,Carneiro Roos-Frantz Fabricia,Zancan Frantz Rafael,Sawicki Sandro

Abstract

O volume de dados produzidos tem crescido em larga escala nos últimos anos. Esses dados são de diferentes fontes e diversificados formatos, caracterizando as principais dimensões do Big Data: grande volume, alta velocidade de crescimento e grande variedade de dados. O maior desafio é como gerar informação de qualidade para inferir insights significativos de tais dados variados e grandes. A Mineração de Dados é o processo de identificar, em dados, padrões válidos, novos e potencialmente úteis. No entanto, a infraestrutura de tecnologia da informação tradicional não é capaz de atender as demandas deste novo cenário. O termo atualmente conhecido como Big Data Mining refere-se à extração de informação a partir de grandes bases de dados. Uma questão a ser respondida é como a comunidade científica está abordando o processo de Big Data Mining? Seria válido identificar quais tarefas, métodos e algoritmos vêm sendo aplicados para extrair conhecimento neste contexto. Este artigo tem como objetivo identificar na literatura os trabalhos de pesquisa já realizados no contexto do Big Data Mining. Buscou-se identificar as áreas mais abordadas, os tipos de problemas tratados, as tarefas aplicadas na extração de conhecimento, os métodos aplicados para a realização das tarefas, os algoritmos para a implementação dos métodos, os tipos de dados que vêm sendo minerados, fonte e estrutura dos mesmos. Um estudo de mapeamento sistemático foi conduzido, foram examinados 78 estudos primários. Os resultados obtidos apresentam uma compreensão panorâmica da área investigada, revelando as principais tarefas, métodos e algoritmos aplicados no Big Data Mining.

Publisher

Fundacao Universidade de Cruz Alta

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3