A Monte Carlo Method for Image Classification Using SVM

Author:

Atanassov Emanouil,Karaivanova Aneta,Ivanovska Sofiya,Durchova Mariya

Abstract

Support Vector Machines are a widely used tool in Machine Learning. They have some important advantages with regards to the more popular Deep Neural Networks. For the problem of image classification, multiple SVMs may be used and the issue of finding the best hyperparameters adds additional complexity and increases the overall computational time required. Our goal is to develop and study Monte Carlo algorithms that allow faster discovery of good hyperparameters and training of the SVMs, without impacting negatively the final accuracy of the models. We also employ GPUs and parallel computing in order to achieve good utilisation of the capabilities of the available hardware. In this paper we describe our methods, provide implementation details and show numerical results, achieved on the publicly available Architectural Heritage Elements image Dataset.

Publisher

Institute of Mathematics and Informatics Bulgarian Academy of Sciences

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3