Take-home Tensile Testing System for Biomechanics Education

Author:

Leineweber Matthew1ORCID

Affiliation:

1. Biomedical Engineering Department, San José State University, San José, CA 95192, USA

Abstract

ABSTRACT Characterizing the load–deformation relationships in both engineering materials and biologic tissues is a key component of undergraduate biomechanics and mechanobiology courses. These relationships are essential to determining the suitability of a given material for biomedical applications, such as identifying the root causes of implant failure and injury and quantifying the effects of mechanical cellular mechanotransduction. Typically, material characterization is done by using industry standard and research-grade material testing systems, which can cost tens to hundreds of thousands of dollars and require large amounts of dedicated laboratory space. This article presents a new design for a low-cost and portable alternative to these commercial systems, consisting of off-the-shelf and 3-dimensional printed components for teaching purposes. Student groups assemble their own devices and conduct material characterization experiments for both elastic and viscoelastic materials on their own time, outside of traditional laboratory settings. The “take-home” labs were pilot tested over a single semester, and preliminary results showed increased understanding of elastic and viscoelastic theory compared with lecture alone. These results suggest that the take-home tensile testing systems may be an effective means of providing a hands-on educational experience in courses in which traditional lab activities are not otherwise possible.

Publisher

Biophysical Society

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3