Enhancing Material Property Predictions through Optimized KNN Imputation and Deep Neural Network Modeling

Author:

Murad Ali Khan

Abstract

In materials science, the integrity and completeness of datasets are critical for robust predictive modeling. Unfortunately, material datasets frequently contain missing values due to factors such as measurement errors, data non-availability, or experimental limitations, which can significantly undermine the accuracy of property predictions. To tackle this challenge, we introduce an optimized K-Nearest Neighbors (KNN) imputation method, augmented with Deep Neural Network (DNN) modeling, to enhance the accuracy of predicting material properties. Our study compares the performance of our Enhanced KNN method against traditional imputation techniques—mean imputation and Multiple Imputation by Chained Equations (MICE). The results indicate that our Enhanced KNN method achieves a superior R² score of 0.973, which represents a significant improvement of 0.227 over Mean imputation, 0.141 over MICE, and 0.044 over KNN imputation. This enhancement not only boosts the data integrity but also preserves the statistical characteristics essential for reliable predictions in materials science.

Publisher

IgMin Publications Inc.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3