Analysis of the State of Moisture Control to Ensure and Regulate the Quality of Grain and Grain Products

Author:

Kalandarov Palvan Iskandarovich

Abstract

The article discusses the methods for determining the maturity of grain and describes its behavior during harvesting, to optimize the selection of the grain moisture state, discusses the requirements for the choice of measurement method and the design of moisture control measuring devices, as well as its high accuracy and the possibility of measuring from field conditions, collection, storage, transportation, and industrial processing and release of finished products of granular materials. The purpose of the study is to improve the efficiency of control and management of complex technological processes and moisture control devices for granular bulk materials of plant origin through the development of systems for automatic and automated control of the electrophysical characteristics of grain products and to increase the reliability of quantitative and qualitative assessments of production and technological measurement information. To achieve this goal, it is necessary to conduct analytical and experimental studies of the possibility of creating an express method for controlling the moisture content of grain and products of their industrial processing and the development of a moisture meter for automated control of raw material parameters during acceptance and storage at grain processing enterprises. The article discusses the scientific and methodological foundations for measuring the electrophysical characteristics of grain products of agricultural production and the implementation on this basis of the functional subsystem of information support by the Automated Process Control System for Controlling the Mass Ratio of Moisture of Plant Origin Materials. A critical analysis of the current state of the theory and practice of automatic control of electrophysical characteristics of grain products and the identification of the trend of their further development and improvement are carried out. A mathematical model of the interaction of a high-frequency field with a granular material has been constructed, where the influence of the elastic properties of the grain on the electrical characteristics of the electromagnetic wave, which distinguishes its behavior in the field of a high-frequency wave from many other dielectrics, has been substantiated, and the influence of a large number of various disturbing factors has been studied, often the measurement results cannot be applied in the control of the technological process due to the uneliminated error, which is the cause of inaccurate information. Primary measuring transducers of electrophysical parameters of grain products are proposed, and their mathematical models are considered. A functional scheme of the measuring device based on the dielcometric method of moisture control of grain and granular materials has been developed, and metrological characteristics have been given.

Publisher

IgMin Publications Inc.

Reference46 articles.

1. 1. Kalandarov PI. Estimate of precision of thermogravimetric method of measuring moisture content: estimate of precision and effectiveness gained with the use of the method in the Agro-Industrial Complex. Measurement Techniques. September, 2021; 64:6; 522-528. DOI 10.1007/s11018-021-01963-9

2. 2. Gritsenko GM, Velichko NN. Bulletin of Altai State Agrarian University No 4 (90). 2012;115-120.

3. 3. Lisovsky VV, Titovitsky IA. Microwave Humidity Control in Technological Processes of the Agro-Industrial Complex. Minsk. BSATU. 2013; 399.

4. 4. Fedyunin PA. Microwave Thermovlagometry. Moscow, Mashinostroenie Publ. 2004; 230.

5. 5. Dvorkin VI. Metrology and Quality Assurance of Chemical Analysis. Moscow. Khimiya Publ. 2001; 263.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3