Federated Learning- Hope and Scope

Author:

Lhamu Sherpa,Nandan Banerji

Abstract

People are suffering from” data obesity” as a result of the expansion and quick development of various Artificial Intelligence (AI) technologies and machine learning fields. The management of the current techniques is becoming more challenging due to the data created in the Smart-Health and Fintech service sectors. To provide stable and reliable methods for processing the data, several Machine Learning (ML) techniques were applied. Due to privacy-related issues with the aforementioned two providers, ML cannot fully use the data, which becomes difficult since it might not give the results that were expected. When the misuse and exploitation of personal data were gaining attention on a global scale and traditional machine learning (CML) was facing difficulties, Google introduced the concept of Federated Learning (FL). In order to enable the cooperative training of machine learning models among several organizations under privacy requirements, federated learning has been a popular research area. The expectation and potential of federated learning in terms of smart-health and fintech services are the main topics of this research.

Subject

General Medicine,General Earth and Planetary Sciences,General Environmental Science,General Medicine,Ocean Engineering,General Medicine,General Medicine,General Medicine,General Medicine,General Earth and Planetary Sciences,General Environmental Science,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3