Author:
Pei-Yu Chen,Chien-Chieh Huang,Yuan-Chen Liu
Abstract
Semantic segmentation is the most significant deep learning technology. At present, automatic assisted driving (Autopilot) is widely used in real-time driving, but if there is a deviation in object detection in real vehicles, it can easily lead to misjudgment. Turning and even crashing can be quite dangerous. This paper seeks to propose a model for this problem to increase the accuracy of discrimination and improve security. It proposes a Convolutional Neural Network (CNN)+ Holistically-Nested Edge Detection (HED) combined with Spatial Pyramid Pooling (SPP). Traditionally, CNN is used to detect the shape of objects, and the edge may be ignored. Therefore, adding HED increases the robustness of the edge, and finally adds SPP to obtain modules of different sizes, and strengthen the detection of undetected objects. The research results are trained in the CityScapes street view data set. The accuracy of Class mIoU for small objects reaches 77.51%, and Category mIoU for large objects reaches 89.95%.
Subject
General Medicine,General Earth and Planetary Sciences,General Environmental Science,General Medicine,Ocean Engineering,General Medicine,General Medicine,General Medicine,General Medicine,General Earth and Planetary Sciences,General Environmental Science,General Medicine
Reference16 articles.
1. 1. Shelhamer E, Long J, Darrell T. Fully Convolutional Networks for Semantic Segmentation. IEEE Trans Pattern Anal Mach Intell. 2017 Apr;39(4):640-651. doi: 10.1109/TPAMI.2016.2572683. Epub 2016 May 24. PMID: 27244717.
2. 2. Krizhevsky A, Sutskever I, Hinton GE. ImageNet classification with deep convolutional neural networks. In Proceedings of the 25th International Conference on Neural Information Processing Systems. Curran Associates Inc., Red Hook, NY, USA. 2012; 1:1097-1105.
3. 3. Simonyan K, Zisserman A. Very Deep Convolutional Networks for Large-Scale Image Recognition. arXiv:1409.1556. 2015.
4. 4. Szegedy C. Going deeper with convolutions. 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2015; 1-9. doi: 10.1109/CVPR.2015.7298594.
5. 5. He K, Zhang X, Ren S, Sun J. Deep Residual Learning for Image Recognition. arXiv:1512.03385. 2015.