Abstract
Aim: Machine learning algorithm plays a vital role in various biometric applications due to its admirable result in detection, recognition and classification. The main objective of this work is to perform comparative analysis on two different machine learning algorithms to recognize the person from low resolution images with high accuracy. Materials & Methods: AlexNet Convolutional Neural Network (ACNN) and Support Vector Machine (SVM) classifiers are implemented to recognize the face in a low resolution image dataset with 20 samples each. Results: Simulation result shows that ACNN achieves a significant recognition rate with 98% accuracy over SVM (89%). Attained significant accuracy ratio (p=0.002) in SPSS statistical analysis as well. Conclusion: For the considered low resolution images ACNN classifier provides better accuracy than SVM Classifier.
Publisher
Centivens Institute of Innovative Research
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献