Affiliation:
1. Nizhnii Novgorod State University named after N.I. Lobachevskii
Abstract
We consider the regularization of the classical Lagrange principle and the Pontryagin maximum principle in convex problems of mathematical programming and optimal control. On example of the “simplest” problems of constrained infinitedimensional optimization, two main questions are discussed: why is regularization of the classical optimality conditions necessary and what does it give?
Publisher
Tambov State University - G.R. Derzhavin
Reference19 articles.
1. Vasil’yev F.P. Metody optimizatsii: v 2 t. [Optimization Methods: in 2 Vols.]. Moscow, Moscow Center for Continuous Mathematical Education Publ., 2011. (In Russian).
2. Sumin M.I. Regulyarizovannaya parametricheskaya teorema Kuna–Takkera v gil’bertovom prostranstve [Regularized parametric Kuhn–Tucker theorem in a Hilbert space]. Zhurnal vychislitel’noy matematiki i matematicheskoy fiziki – Computational Mathematics and Mathematical Physics, 2011, vol. 51, no. 9, pp. 1594-1615. (In Russian).
3. Sumin M.I. Ustoychivoye sekventsial’noye vypukloye programmirovaniye v gil’bertovom prostranstve i ego prilozheniye k resheniyu neustoychivykh zadach [Stable sequential convex programming in a Hilbert space and its application for solving unstable problems]. Zhurnal vychislitel’noy matematiki i matematicheskoy fiziki – Computational Mathematics and Mathematical Physics, 2014, vol. 54, no. 1, pp. 25-49. (In Russian).
4. Trenogin V.A. Funktsional’nyy analiz [Functional Analysis]. Moscow, Nauka Publ., 1980, 496 p. (In Russian).
5. Krein S.G. (ed.). Funktsional’nyy analiz [Functional Analysis]. Moscow, Nauka Publ., 1972, 544 p. (In Russian).
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献