ON OBTAINING EFFECTIVE CONDITIONS FOR THE SOLVABILITY OF A SYSTEM OF FUNCTIONAL-DIFFERENTIAL EQUATIONS DETERMINATED ON A GEOMETRIC GRAPH

Author:

Plaksina Vera Pavlovna1

Affiliation:

1. Perm National Research Polytechnic University

Abstract

This paper is devoted to consideration of a boundary value problem for a system of functional differential equations determined on a geometric graph. The boundary conditions of the problem are determined by the conditions for the connection of the edges of the graph. There is an algorithm that reduces the system of equations on the graph to the system determined on the set Θ of disjoint segments of the real axis. The Azbelev’s W-method is applied to the system determined on the set Θ; what makes it possible to obtain effective conditions for the unique solvability of the original system. An example is given.

Publisher

Tambov State University - G.R. Derzhavin

Reference8 articles.

1. Pokornyy Yu.V., Penkin O.M., Pryadiev V.L., Borovskikh A.V., Lazarev K.P., Shabrov S.A. Differentsial’nye uravneniya na geometricheskikh grafakh [Differential Equations at Geometrical Graphs]. Moscow, Fizmatlit Publ., 2005, 272 p. (In Russian).

2. Pokornyy Yu.V., Bakhtina Zh.I., Zvereva M.B., Shabrov S.A. Ostsillyatsionnyy metod Shturma v spektral’nykh zadachakh [Schturm Oscillatory Method at Special Problems]. Moscow, Fizmatlit Publ., 2009, 192 p. (In Russian).

3. Azbelev N.V., Maksimov V.P., Rakhmatullina L.F. Vvedenie v teoriyu funktsional’no-differentsial’nykh uravneniy [Introduction to the Theory of Functional Differential Inclusions]. Moscow, Nauka Publ., 1991, 280 p. (In Russian).

4. Azbelev N.V., Maksimov V.P., Rakhmatullina L.F. Elementy sovremennoy teorii funktsional’no-differentsial’nykh uravneniy. Metody i prilozheniya [Elements of Modern Theory of Functional Differential Equations. Methods and Applications]. Moscow, Institute of Computer Science Publ., 2002, 384 p. (In Russian).

5. Plaksina V.P., Provotorova E.N. Ob odnom klasse kraevykh zadach dlya impul’snykh sistem [On one class of boundary value problems for impulse systems]. Differentsial’nye uravneniya – Differential Equations, 1988, vol. 24, no. 8, pp. 881-885. (In Russian).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3