Antiperiodic boundary value problem for an implicit ordinary differential equation

Author:

Arutyunov Aram V.1ORCID,Zhukovskaya Zukhra T.2ORCID,Zhukovskiy Sergey E.2ORCID

Affiliation:

1. V. A. Trapeznikov Institute of Control Sciences of RAS

2. V.A. Trapeznikov Institute of Control Sciences of RAS

Abstract

The paper is devoted to the investigation of the antiperiodic boundary value problem for an implicit nonlinear ordinary differential equation $$f(t,x,\dot x)=0, \quad x(0)+x(\tau)=0.$$ We assume that the mapping $f:\mathbb{R}\times \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}^k$ defining the equation under consideration is smooth and satisfies the condition of uniform nondegeneracy of the first derivative $$ \inf \bigl\{ {\rm cov} f'_v (t,x,v):\, (t,x,v)\in \mathbb{R}\times \mathbb{R}^n \times \mathbb{R}^n \bigr\}>0. $$ Here ${\rm cov} A$ is the Banach constant of the linear operator $A.$ The assumption of uniform non-degeneracy holds, in particular, for the mapping $f$ defining an explicit ordinary differential equation. For implicit equations, sufficient conditions for the existence of a solution to an antiperiodic boundary value problem are obtained, and estimates for solutions are found. Co\-ro\-l\-la\-ries for normal ordinary differential equations are formulated. To prove the main result, the original implicit equation is reduced to an explicit differential equation by applying a nonlocal implicit function theorem. Then we prove an auxiliary assertion on the solvability of the equation $x+\psi(x)=0,$ which is an analog of Brouwer's fixed point theorem. It is shown that the mapping $\psi,$ that assigns the value of the solution of the Cauchy problem at the point $\tau$ to an arbitrary initial point $x_0,$ is well defined and satisfies the assumptions of the auxiliary statement. This reasoning completes the proof of the existence of a solution to the boundary value problem.

Publisher

Tambov State University - G.R. Derzhavin

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3