Affiliation:
1. Aarhus University
2. University of Copenhagen
Abstract
Let G/H be a hyperbolic space over R; C or H; and let K be a maximal compact subgroup of G. Let D denote a certain explicit invariant differential operator, such that the non-cuspidal discrete series belong to the kernel of D. For any L^2-Schwartz function f on G/H we prove that the Abel transform A(Df) of Df is a Schwartz function. This is an extension of a result established in [2] for K-finite and K∩H-invariant functions.
Publisher
Tambov State University - G.R. Derzhavin