Optimisation of insulation and solar control strategies as function of building’s intended use in the retrofit of massive buildings

Author:

Carbonari AntonioORCID,Scarpa MassimilianoORCID

Abstract

In temperate climates, such as most Italian ones, the need to limit both winter heat losses of buildings and their overheating in other periods is present. The second requirement is particularly relevant in the presence of high internal and solar gains. In these climates, it is not convenient to exceed the insulation thickness. Therefore, when the energy renovation of an old building with heavy masonry is performed it is a question of optimizing the position (internal or external) and the thickness of the additional insulation. Another question is the choice of a solar control strategy, if extended glazed surfaces are present. Both of these problems are present in old Italian public buildings, particularly in schools. This paper presents a computerized methodology for optimizing these choices. The case study consists in a typical school building from the early 1900s with a heavy structure and large glass surfaces in a climate of Northern Italy (Bologna), with cold winter and hot summer. The results show that the external insulation is the best performing, and that there is an optimal thickness when the building is a school. If the building is reused for offices, due to the lower internal gains, the energy convenience of the external insulation increases, but its optimal thickness becomes excessive. Small slats inserted between the glasses are the best performing solar control device from both an energy and visual comfort point of view; on the other hand, the external slats provide better thermal comfort in the warmer period.

Publisher

World Energy and Environment Technology Ltd - WEENTECH

Subject

General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3