Numerical study on Finned Latent Heat Storage for Tri-generation System

Author:

Zhu Guangya1ORCID,Chow Tin-Tai1ORCID

Affiliation:

1. City University of Hong Kong, Hong Kong Special Administrative Region China

Abstract

Tri-generation system combines the supply of electric power, heating and cooling energy into one single system. Compared to the separated energy generation systems, the advantages lie in its higher efficiency, reliability and flexibility, as well as the reduced pollutant emissions. Yet the mismatch in system electricity and thermal demands often downgrades its effectiveness and economic merits. At this end, the adoption of thermal energy storage can be a practical means of improvement. Among the various choices, the finned latent heat storage using phase change material is distinct advantage owing to its high energy density. On the other hand, the finned latent heat storage design requires a detailed analysis of the heat transfer process. In this paper, our numerical model is introduced for use in simulating the associated complex heat transfer processes. The accuracy of the numerical model has been verified making use of the published experimental data available from the literature. Furthermore, our follow-up parametric study shows that the increase of fin thickness will improve the heat transfer performance for a given design configuration and the better heat transfer can be achieved with the reduction in fin length and fin spacing as well.

Publisher

World Energy and Environment Technology Ltd - WEENTECH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3