Combined Effect of Multistage Processing and Treatment Methods on the Physical, Chemical, and Microstructure Properties of Recycled Concrete Aggregates

Author:

Sai Trivedi Shiv1,Dixit Karunanidhi1,Das Bibhuti Bhusan2ORCID,Barbhuiya Salim3

Affiliation:

1. Sustainable Construction and Building Materials Laboratory, Department of Civil Engineering, National Institute of Technology Karnataka 1 , Surathkal, Karnataka575025, India

2. Department of Civil Engineering, National Institute of Technology Karnataka 2 , Surathkal, Karnataka575025, India (Corresponding author), e-mail: bibhutibhusan@gmail.com , ORCID link for author moved to before name tags https://orcid.org/0000-0002-1245-4494

3. Department of Engineering and Construction, University of East London 3 , University Way, LondonE16 2RD, UK

Abstract

Abstract This research aims to examine the effects of multistage processing on reducing the old cement fractions and enhancing the quality of concrete recycled aggregate (CRA). The investigation involves the use of demolished concrete debris and subsequent treatments in both single and multistage processes. The recycled aggregates (RAs) were obtained using a multistage jaw crushing process followed by utilizing natural aggregate, untreated RA, RA treated with hydrochloric acid (HCl) and sodium silicate (SS) immersion (single-stage treatment), and RA treated with mechanical scrubbing and SS immersion in two separate stages (multistage treatment). The subsequent phase of the experimental inquiry involves assessing the physical attributes of both treated and untreated RA. This is followed by conducting microstructural examinations utilizing techniques such as scanning electron microscopy, energy-dispersive X-ray spectroscopy, X-ray diffraction, Fourier transform infrared spectroscopy (FTIR), and thermogravimetry-differential thermal analysis. The findings indicate that employing a two-step process, involving mechanical abrasion followed by immersion in SS, yields high-quality CRA. This conclusion is reinforced by the favorable physical performance observed. The water absorption values of CRA were lowered by 78 % through single-stage treatments such as immersion in HCl. The similar treatment is found to show densest concrete with calcium/silicon ratio reduced to around 81 % to that of untreated CRA. Additionally, for single-stage treated CRA samples, microstructural study using FTIR verified the creation of additional hydration products, whereas for two-stage treated CRA specimens, thermogravimetric analysis demonstrated the formation of stable CSH. According to the findings, it is advised to use a multistage process of jaw crushing, then treating it with mechanical abrasion and SS. This has the ability to improve the physical, chemical, and microstructural properties of CRA.

Publisher

ASTM International

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3