Impact of Block Ratio, Polymer Architecture, and Soft Segment Structure on Modified Asphalt Rheological Performance

Author:

Xiao Hang1,Cao Dan2,Fu Na1,Yi Hongyu3ORCID

Affiliation:

1. Intelligent Construction and Environmental Engineering School of Chengdu Textile College 1 , 186 Taishan South St., Xipu, Sichuan Chengdu611731, China

2. Intelligent Construction and Environmental Engineering School of Chengdu Textile College 2 , 186 Taishan South St., Xipu, Sichuan Chengdu611731, China (Corresponding author), e-mail: caodantougao@126.com

3. China Railway Development and Investment Group Co. Ltd 3 , Zhongtie Building, Caiyunnan, Yunnan Kunming650200, China , ORCID link for author moved to before name tags https://orcid.org/0009-0005-2117-5963

Abstract

Abstract This study investigates the impact of styrenic triblock copolymer (STC) modifiers with different block ratios, polymerization methods, and soft segment structures on the microstructure and rheological properties of modified asphalt. Six commonly used STCs were selected, and modified asphalt was prepared using a rapid quenching method without stabilizers, ensuring no phase separation. These samples underwent laser confocal microscopy, temperature sweep, multiple stress creep recovery, linear amplitude sweep, and bending beam rheometer tests. The findings are as follows: Based on the characteristics of different STC types, it is observed that modifiers with higher block ratios and crystallinity are more challenging to disperse uniformly in modified asphalt. However, the presence of methyl side chains enhances the dispersion uniformity of the modifier in asphalt. Additionally, star-shaped modifiers exhibit weaker dispersion uniformity compared to linear ones. Among them, the styrene-butadiene-styrene (SBS) modified asphalt with a block ratio of 3/7 demonstrates the highest composite modulus and maximum creep recovery, showcasing superior high-temperature performance. Star-shaped SBS-modified asphalt excels in high-temperature performance and exhibits better stress relaxation at low temperatures, but it has a lower fatigue life compared to linear SBS. Styrene-ethylene-butadiene-styrene modified asphalt exhibits the maximum modulus but the poorest elastic recovery performance. Styrene-isoprene-styrene modified asphalt has the minimum modulus and fatigue life but demonstrates optimal elastic recovery.

Publisher

ASTM International

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3