Ultrasonic-Assisted Tungsten Inert Gas Welding of Inconel 625 Joints to Reduce Hot Cracking and Improve Microhardness: Optimization and Prediction Methods

Author:

Annamalai Dhilip1ORCID,Nampoothiri Jayakrishnan2ORCID

Affiliation:

1. Department of Production Engineering, PSG College of Technology 1 , Peelamedu, Coimbatore, 641004Tamil Nadu, India (Corresponding author), e-mail: dlp.prod@psgtech.ac.in , ORCID link for author moved to before name tags https://orcid.org/0000-0001-7992-2312

2. Department of Production Engineering, PSG College of Technology 2 , Peelamedu, Coimbatore, 641004Tamil Nadu, India , ORCID link for author moved to before name tags https://orcid.org/0000-0002-3467-8309

Abstract

Abstract This research article investigated the optimized process parameters for decreasing the hot cracking phenomenon and improving the microhardness of ultrasonic vibratory-assisted tungsten inert gas (U-TIG) welding of Inconel 625 alloy. The study employed two approaches: response surface methodology (RSM) and RSM coupled with a genetic algorithm (RSM-GA). The objective was to analyze the impact of welding process parameters, including welding current, gas flow rate, presence or absence of ultrasonic vibration, and filler material, on the crack length and microhardness of the welded joints. Experimental tests were conducted using RSM with a full factorial central composite design matrix, enabling comprehensive parameter space exploration. Parametric mathematical models were developed based on the obtained experimental data. These models were then utilized as fitness functions within the GA to determine the global optimal solution, aiming to minimize crack length and maximize microhardness. Additionally, artificial neural network (ANN) models were developed to predict the responses and optimize the welding process. The comparison between the experimental and predicted data demonstrated the reliability of the ANN model in accurately estimating the crack length and microhardness of U-TIG welded Inconel 625 alloy joints. The developed models achieved a prediction accuracy of less than 5 % error.

Publisher

ASTM International

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3